1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
use ::core::{
    fmt,
    marker::PhantomData,
    mem::ManuallyDrop,
    ops::{Deref, DerefMut},
    ptr::{copy_nonoverlapping, NonNull},
};
use ::mischief::{
    layout_of_val_raw,
    Metadata,
    Pointer,
    Region,
    RestructurablePointer,
    Slot,
    Unique,
    Within,
};
use ::munge::{Destructure, Restructure};
use ::ptr_meta::{metadata, Pointee};

use crate::{
    fmt::{DebugRaw, DisplayRaw},
    DropRaw,
    Mut,
    Pinned,
    Ref,
};

/// An immovable owned value in borrowed backing memory.
pub struct Val<'a, T: DropRaw + ?Sized> {
    ptr: NonNull<T>,
    _phantom: PhantomData<&'a mut T>,
}

impl<T: DropRaw + ?Sized> Drop for Val<'_, T> {
    fn drop(&mut self) {
        // SAFETY:
        // - `self.ptr` is always non-null, properly aligned, and valid for
        //   reading and writing.
        // - `Val` owns the value it points to, so `self.ptr` is always valid
        //   for dropping.
        unsafe { T::drop_raw(self.as_mut()) }
    }
}

impl<'a, T: DropRaw + ?Sized> Val<'a, T> {
    /// Creates a new `Val` from an exclusively owned pointer.
    ///
    /// # Safety
    ///
    /// - `ptr` must be non-null, properly aligned, and valid for reading,
    ///   writing, and dropping.
    /// - `ptr` must not alias any other accessible references for `'a`.
    /// - The value pointed to by `ptr` must be initialized and immovable.
    pub unsafe fn new_unchecked(ptr: *mut T) -> Self {
        Self {
            // SAFETY: `ptr` is non-null.
            ptr: unsafe { NonNull::new_unchecked(ptr) },
            _phantom: PhantomData,
        }
    }

    /// Creates a new `Val` from an initialized `Slot`.
    ///
    /// # Safety
    ///
    /// The value pointed to by `slot` must be initialized, valid for dropping,
    /// and immovable.
    pub unsafe fn from_slot_unchecked(slot: Slot<'a, T>) -> Self {
        Self {
            // SAFETY: `Slot`s always have a non-null pointer.
            ptr: unsafe { NonNull::new_unchecked(slot.as_ptr()) },
            _phantom: PhantomData,
        }
    }

    /// Returns a pointer to the referenced value.
    pub fn as_ptr(&self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Consumes the `Val` and leaks its value, returning a mutable reference
    /// `&'a mut T`.
    ///
    /// This function is mainly useful for data that lives for as long as its
    /// backing memory. Dropping the returned reference will cause a memory
    /// leak. If this is not acceptable, then the reference should first be
    /// wrapped with the [`Val::new_unchecked`] function, producing a `Val`.
    /// This `Val` can then be dropped which will properly destroy `T`.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Val::leak(x)` instead of `x.leak()`. This is so that there is no
    /// conflict with a method named `leak` on the value type.
    pub fn leak(v: Self) -> Mut<'a, T> {
        let v = ManuallyDrop::new(v);

        // SAFETY:
        // - `v.ptr` is always non-null, properly aligned, and valid for reads
        //   and writes.
        // - `v.ptr` always points to a valid `T` and does not alias any other
        //   mutable references because it has the same aliasing as `v`.
        // - The value pointed to by `v.ptr` will live for at least `'a` because
        //   its backing memory lives for at least that long. `v` was the only
        //   site allowed to drop the value, so it will also not be dropped.
        // - `v` ensured that the pointee of `v.ptr` is immovable, so creating
        //   a `Mut` out of it will continue that guarantee.
        unsafe { Mut::new_unchecked(v.ptr.as_ptr()) }
    }

    /// Casts a `Val<T>` to a `Val<U>`.
    ///
    /// # Safety
    ///
    /// The value owned by `self` must be a valid `U`.
    pub unsafe fn cast<U: DropRaw>(self) -> Val<'a, U>
    where
        T: Sized,
    {
        let v = ManuallyDrop::new(self);

        // SAFETY: `v.ptr` is always non-null, properly aligned, and valid for
        // reading, writing, and dropping. The caller has guaranteed that `self`
        // actually owns a `U`, so the cast `Val` is also initialized and
        // immovable.
        unsafe { Val::new_unchecked(v.ptr.as_ptr().cast()) }
    }

    /// Consumes the `Val` and returns the value it contained.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Val::read(this)` instead of `this.read()`. This is so that there
    /// is no conflict with a method on the inner type.
    pub fn read(this: Self) -> T
    where
        T: Sized + Unpin,
    {
        let this = ManuallyDrop::new(this);
        // SAFETY: `ptr` is always non-null, properly aligned, and valid for
        // reads. The value may be moved because it implements `Unpin`.
        unsafe { this.ptr.as_ptr().read() }
    }

    /// Consumes the `Val` and moves it into the given `Slot`.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Val::read_unsized(this, slot)` instead of
    /// `this.read_unsized(slot)`. This is so that there is no conflict with a
    /// method on the inner type.
    ///
    /// # Panics
    ///
    /// Panics if `slot` does not have the same metadata as `this`.
    pub fn read_unsized(this: Self, slot: Slot<'_, T>)
    where
        T: Pointee + Unpin,
        <T as Pointee>::Metadata: Metadata<T>,
    {
        assert!(metadata(this.as_ptr()) == metadata(slot.as_ptr()));
        // SAFETY: We asserted that `this` has the same metadata as `slot`.
        unsafe {
            Self::read_unsized_unchecked(this, slot);
        }
    }

    /// Consumes the `Val` and moves it into the given `Slot`.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Val::read_unsized_unchecked(this, slot)` instead of
    /// `this.read_unsized_unchecked(slot)`. This is so that there is no
    /// conflict with a method on the inner type.
    ///
    /// # Safety
    ///
    /// `slot` must have the same metadata as `this`.
    pub unsafe fn read_unsized_unchecked(this: Self, slot: Slot<'_, T>)
    where
        T: Pointee + Unpin,
        <T as Pointee>::Metadata: Metadata<T>,
    {
        let this = ManuallyDrop::new(this);
        let layout = layout_of_val_raw(this.as_ptr());
        // SAFETY:
        // - `this` is valid for reads of `size` bytes because that is the size
        unsafe {
            copy_nonoverlapping(
                this.as_ptr().cast::<u8>(),
                slot.as_ptr().cast::<u8>(),
                layout.size(),
            );
        }
    }

    /// Forgets the contained value, returning a `Slot` of the underlying
    /// memory.
    pub fn forget(this: Self) -> Slot<'a, T> {
        let this = ManuallyDrop::new(this);
        // SAFETY: `ptr` is a valid pointer for `'a` and the returned `Slot` is
        // borrowed for `'b` and cannot be modified until the returned value is
        // dropped.
        unsafe { Slot::new_unchecked(this.ptr.as_ptr()) }
    }

    /// Drops the contained value, returning a `Slot` of the underlying memory.
    pub fn drop(this: Self) -> Slot<'a, T> {
        // SAFETY: `ptr` is a valid pointer for `'a` and the returned `Slot` is
        // borrowed for `'b` and cannot be modified until the returned value is
        // dropped.
        let result = unsafe { Slot::new_unchecked(this.ptr.as_ptr()) };
        drop(this);
        result
    }

    /// Returns a `Ref` of the referenced value.
    pub fn as_ref(&self) -> Ref<'_, T> {
        // SAFETY: The requirements for `Ref` are a subset of those for `Val`.
        unsafe { Ref::new_unchecked(self.as_ptr()) }
    }

    /// Returns a reborrowed `Mut` of the referenced value.
    pub fn as_mut(&mut self) -> Mut<'_, T> {
        // SAFETY: The requirements for `Ref` are a subset of those for `Val`.
        unsafe { Mut::new_unchecked(self.as_ptr()) }
    }
}

// SAFETY: `Val` returns the same value from `target`, `deref`, and `deref_mut`.
unsafe impl<T: DropRaw + ?Sized> Pointer for Val<'_, T> {
    type Target = T;

    fn target(&self) -> *mut Self::Target {
        self.ptr.as_ptr()
    }
}

// SAFETY: `T` is only located in `R`, so the targets of all `Val<'_, T>` must
// be located in `R`.
unsafe impl<T, R> Within<R> for Val<'_, T>
where
    T: DropRaw + Pinned<R> + ?Sized,
    R: Region,
{
}

impl<T: DropRaw + ?Sized> Deref for Val<'_, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // SAFETY:
        // - `self.ptr` is always properly aligned and dereferenceable.
        // - `self.ptr` always points to an initialized value of `T`.
        // - Because `Val<'a, T>` lives for `'a` at most, the lifetime of
        //   `&self` must be shorter than `'a`. That lifetime is used for the
        //   returned reference, so the returned reference is valid for `'a` and
        //   has shared read-only aliasing.
        unsafe { self.ptr.as_ref() }
    }
}

// Note that `T` must be `Unpin` to avoid violating the immovability invariant
// of `Val`.
impl<T: DropRaw + Unpin + ?Sized> DerefMut for Val<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY:
        // - `self.ptr` is always properly aligned and dereferenceable.
        // - `self.ptr` always points to an initialized value of `T`.
        // - Because `Val<'a, T>` is mutably borrowed for `'_`, the returned
        //   reference is also valid for `'_` and has unique read-write
        //   aliasing.
        unsafe { &mut *self.ptr.as_ptr() }
    }
}

impl<T: DebugRaw + DropRaw + ?Sized> fmt::Debug for Val<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        DebugRaw::fmt_raw(self.as_ref(), f)
    }
}

impl<T: DisplayRaw + DropRaw + ?Sized> fmt::Display for Val<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        DisplayRaw::fmt_raw(self.as_ref(), f)
    }
}

// SAFETY: `Destructure::underlying` for `Val` returns the same pointer as
// `Pointer::target`.
unsafe impl<T: DropRaw + ?Sized> RestructurablePointer for Val<'_, T> {}

// SAFETY:
// - `Val<'a, T>` is destructured by value, so its `Destructuring` type is
//   `Value`.
// - `underlying` returns the pointer inside the `Val<'a, T>`, which is
//   guaranteed to be non-null, properly-aligned, and valid for reads.
unsafe impl<'a, T: DropRaw + ?Sized> Destructure for Val<'a, T> {
    type Underlying = T;
    type Destructuring = ::munge::Value;

    fn underlying(&mut self) -> *mut Self::Underlying {
        self.as_ptr()
    }
}

// SAFETY: `restructure` returns a `Val<'a, U>` that takes ownership of the
// restructured field because `Val<'a, T>` is destructured by value.
unsafe impl<'a, T: DropRaw, U: 'a + DropRaw> Restructure<U> for Val<'a, T> {
    type Restructured = Val<'a, U>;

    unsafe fn restructure(&self, ptr: *mut U) -> Self::Restructured {
        // SAFETY:
        // - A pointer to a subfield of a `Val` is also non-null, properly
        //   aligned, and valid for reads and writes. It is also valid for
        //   dropping because we have been given ownership of the field.
        // - `munge` enforces that the field pointer cannot alias another
        //   accessible reference to the field. Because `Val` owns the entire
        //   object, there cannot be another mutable reference to one of its
        //   fields.
        // - All of the fields of a `Val<'a, T>` must be initialized and
        //   immovable because the overall `Val<'a, T>` is initialized and
        //   immovable.
        unsafe { Val::new_unchecked(ptr) }
    }
}

// SAFETY: Because the `T` value is unique and values can only have one owner,
// there can only ever be one `Val` of each unique `T` at any time.
unsafe impl<T: DropRaw + Unique + ?Sized> Unique for Val<'_, T> {}