1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
use ::core::{
    mem::{ManuallyDrop, MaybeUninit},
    ops::{Deref, DerefMut},
    ptr::{self, read, NonNull},
};
#[cfg(feature = "alloc")]
use ::heresy::alloc::Global;
use ::heresy::{alloc::Allocator, Box};
use ::ptr_meta::Pointee;

use crate::{
    layout_of_val_raw,
    Metadata,
    Pointer,
    RegionalAllocator,
    Slot,
    Within,
};

/// A box that may be uninitialized.
///
/// Frames have the same memory layouts as [`Boxes`](Box).
pub struct Frame<
    T: Pointee + ?Sized,
    #[cfg(feature = "alloc")] A: Allocator = ::heresy::alloc::Global,
    #[cfg(not(feature = "alloc"))] A: Allocator,
> where
    T::Metadata: Metadata<T>,
{
    ptr: NonNull<T>,
    alloc: A,
}

impl<T: Pointee + ?Sized, A: Allocator> Drop for Frame<T, A>
where
    T::Metadata: Metadata<T>,
{
    fn drop(&mut self) {
        let layout = layout_of_val_raw(self.as_ptr());
        // SAFETY:
        // - `ptr` is currently allocated by `self.alloc`.
        // - `layout` fits that block of memory.
        unsafe {
            self.alloc.deallocate(self.ptr.cast(), layout);
        }
    }
}

impl<T: Pointee + ?Sized, A: Allocator> Frame<T, A>
where
    T::Metadata: Metadata<T>,
{
    /// Returns a reference to the underlying allocator.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Frame::allocator(&f)` instead of `f.allocator()`. This is so that
    /// there is no conflict with a method on the inner type.
    pub fn allocator(f: &Self) -> &A {
        &f.alloc
    }

    /// Returns a pointer to the underlying memory.
    pub fn as_ptr(&self) -> *const T {
        self.ptr.as_ptr()
    }

    /// Returns a mutable pointer to the underlying memory.
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.ptr.as_ptr()
    }

    /// Converts to `Box<T, A>`.
    ///
    /// This does not move the value pointed to by the frame.
    ///
    /// # Safety
    ///
    /// The contents of the frame must be initialized. Calling this when the
    /// content is not yet initialized causes immediate undefined behavior.
    ///
    /// Additionally, most types have additional invariants beyond merely being
    /// considered initialized at the type level. For example, a `1`-initialized
    /// `Vec<T>` is considered initialized (under the current implementation;
    /// this does not constitute a stable guarantee) because the only
    /// requirement the compiler knows about it is that the data pointer must be
    /// non-null. Creating such a `Vec<T>` does not cause _immediate_ undefined
    /// behavior, but will cause undefined behavior with most safe operations
    /// (including dropping it).
    pub unsafe fn assume_init(self) -> Box<T, A> {
        let (raw, alloc) = Self::into_raw_with_allocator(self);
        // SAFETY: `Frame`s allocate memory with the same layouts as `Box`es.
        unsafe { Box::from_raw_in(raw, alloc) }
    }

    /// Constructs a frame from a raw pointer in the given allocator.
    ///
    /// After calling this function, the raw pointer is owned by the resulting
    /// `Frame`. Specifically, the `Frame` destructor will free the allocated
    /// memory. For this to be safe, the memory must have been allocated in
    /// accordance with the memory layout used by `Frame`.
    ///
    /// # Safety
    ///
    /// `raw` must be non-null and allocated by `alloc` according to the memory
    /// layout used by `Frame`.
    pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
        Self {
            // SAFETY: `raw` is not null.
            ptr: unsafe { NonNull::new_unchecked(raw) },
            alloc,
        }
    }

    /// Consumes the `Frame`, returning a raw pointer and the allocator.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the memory
    /// previously managed by the `Frame`. In particular, the caller should
    /// properly release the memory, taking into account the memory layout used
    /// by `Frame`. The easiest way to do this is to convert the raw pointer
    /// back into a `Frame` with the [`Frame::from_raw_in`] function, allowing
    /// the `Frame` destructor to perform the cleanup.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Frame::into_raw_with_allocator(f)` instead of
    /// `f.into_raw_with_allocator()`. This is so that there is no conflict with
    /// a method on the inner type.
    pub fn into_raw_with_allocator(f: Self) -> (*mut T, A) {
        let f = ManuallyDrop::new(f);
        // SAFETY: Because it is a reference, `f.alloc` is valid for reads,
        // properly aligned, and points to a properly initialized `A`. The
        // original will never be accessed or dropped.
        (f.ptr.as_ptr(), unsafe { read(&f.alloc) })
    }

    /// Allocates memory for an unsized type with the given metadata in the
    /// given allocator.
    ///
    /// This doesn't actually allocate if the metadata provides a layout with
    /// zero size.
    ///
    /// # Safety
    ///
    /// `metadata` must be valid for a pointer to `T`.
    pub unsafe fn new_unsized_in(metadata: T::Metadata, alloc: A) -> Self {
        // SAFETY: The caller has ensured that `metadata` is valid for a pointer
        // to `T`.
        let layout = unsafe { metadata.pointee_layout() };
        let ptr = if layout.size() == 0 {
            // TODO strict_provenance: Use `::core::ptr::invalid_mut`.
            #[allow(clippy::as_conversions)]
            ptr_meta::from_raw_parts_mut(layout.align() as *mut (), metadata)
        } else {
            ptr_meta::from_raw_parts_mut(
                alloc.allocate(layout).unwrap().as_ptr().cast(),
                metadata,
            )
        };
        Self {
            // SAFETY: `ptr` is non-null.
            ptr: unsafe { NonNull::new_unchecked(ptr) },
            alloc,
        }
    }

    /// Returns a [`Slot`] of the internal contents.
    pub fn slot(&'_ mut self) -> Slot<'_, T> {
        // SAFETY:
        // - `self.as_mut_ptr()` is always non-null, properly aligned, and valid
        //   for reads and writes.
        // - `self.as_mut_ptr()` cannot alias any other accessible references
        //   because `self` is mutably borrowed.
        unsafe { Slot::new_unchecked(self.as_mut_ptr()) }
    }
}

impl<T, A: Allocator> Frame<T, A> {
    /// Converts a `Frame<T>` into a `Frame<[T]>`.
    ///
    /// This conversion does not allocate on the heap and happens in place.
    pub fn into_framed_slice(framed: Self) -> Frame<[T], A> {
        let (ptr, alloc) = Self::into_raw_with_allocator(framed);
        let ptr = ptr::slice_from_raw_parts_mut(ptr.cast(), 1);

        // SAFETY: `ptr` is a valid slice of length 1 allocated in `alloc`.
        unsafe { Frame::from_raw_in(ptr, alloc) }
    }

    /// Allocates memory in the given allocator.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    pub fn new_in(alloc: A) -> Self {
        // SAFETY: `()` is valid metadata for a pointer to `T`.
        unsafe { Self::new_unsized_in((), alloc) }
    }

    /// Sets the value of the underlying memory and converts the frame to a box.
    ///
    /// This overwrites any previous value without dropping it, so be careful
    /// not to use this after initializing the frame unless you want to skip
    /// running the destructor.
    pub fn init(mut self, value: T) -> Box<T, A> {
        self.write(value);
        // SAFETY: The value in this frame is now initialized.
        unsafe { self.assume_init() }
    }
}

#[cfg(feature = "alloc")]
impl<T: Pointee + ?Sized> Frame<T, Global>
where
    T::Metadata: Metadata<T>,
{
    /// Constructs a frame from a raw pointer.
    ///
    /// After calling this function, the raw pointer is owned by the resulting
    /// `Frame`. Specifically, the `Frame` destructor will free the allocated
    /// memory. For this to be safe, the memory must have been allocated in
    /// accordance with the memory layout used by `Frame`.
    ///
    /// # Safety
    ///
    /// This function is unsafe because improper use may lead to memory
    /// problems. For example, a double-free may occur if the function is called
    /// twice on the same raw pointer.
    ///
    /// The safety conditions are described in the memory layout section.
    pub unsafe fn from_raw(raw: *mut T) -> Self {
        // SAFETY: The safety requirements for this function are the same as
        // those for `from_raw_in`.
        unsafe { Self::from_raw_in(raw, Global) }
    }

    /// Consumes the `Frame`, returning a raw pointer.
    ///
    /// The pointer will be properly aligned and non-null.
    ///
    /// After calling this function, the caller is responsible for the memory
    /// previously managed by the `Frame`. In particular, the caller should
    /// properly release the memory, taking into account the memory layout used
    /// by `Frame`. The easiest way to do this is to convert the raw pointer
    /// back into a `Frame` with the [`Frame::from_raw`] function, allowing the
    /// `Frame` destructor to perform the cleanup.
    ///
    /// Note: this is an associated function, which means that you have to call
    /// it as `Frame::into_raw(f)` instead of `f.into_raw()`. This is so that
    /// there is no conflict with a method on the inner type.
    pub fn into_raw(f: Self) -> *mut T {
        Frame::into_raw_with_allocator(f).0
    }

    /// Allocates memory for an object with the given metadata on the heap.
    ///
    /// This doesn't actually allocate if the metadata provides a layout with
    /// zero size.
    ///
    /// # Safety
    ///
    /// `metadata` must be valid for a pointer to `T`.
    pub unsafe fn new_unsized(metadata: T::Metadata) -> Self {
        // SAFETY: The caller has guaranteed that `metadata` is valid for a
        // pointer to `T`.
        unsafe { Self::new_unsized_in(metadata, Global) }
    }
}

#[cfg(feature = "alloc")]
impl<T> Frame<T, Global> {
    /// Allocates memory on the heap.
    ///
    /// This doesn't actually allocate if `T` is zero-sized.
    pub fn new() -> Self {
        Self::new_in(Global)
    }
}

impl<T: Default, A: Allocator + Default> Default for Frame<T, A> {
    fn default() -> Self {
        Self::new_in(A::default())
    }
}

// SAFETY: `Frame` is guaranteed to return the same value from `target`,
// `deref`, and `deref_mut`.
unsafe impl<T: Pointee + ?Sized, A: Allocator> Pointer for Frame<T, A>
where
    <T as Pointee>::Metadata: Metadata<T>,
{
    type Target = T;

    fn target(&self) -> *mut Self::Target {
        self.as_ptr().cast_mut()
    }
}

impl<T, A: Allocator> Deref for Frame<T, A> {
    type Target = MaybeUninit<T>;

    fn deref(&self) -> &Self::Target {
        // SAFETY: `self.as_ptr()` is non-null, properly aligned, and always a
        // valid `MaybeUninit<T>`.
        unsafe { &*self.as_ptr().cast() }
    }
}

impl<T, A: Allocator> DerefMut for Frame<T, A> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        // SAFETY:
        // - `self.as_mut_ptr()` is non-null, properly aligned, and always a
        //   valid `MaybeUninit<T>`.
        // - `self.as_mut_ptr()` cannot be aliased because `self` is mutably
        //   borrowed.
        unsafe { &mut *self.as_mut_ptr().cast() }
    }
}

// SAFETY: The pointee of `Frame<T, A>` is located in `A::Region` because it
// is allocated in `A`.
unsafe impl<T, A> Within<A::Region> for Frame<T, A>
where
    T: Pointee + ?Sized,
    <T as Pointee>::Metadata: Metadata<T>,
    A: RegionalAllocator,
{
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use ::munge::munge;

    use crate::Frame;

    #[test]
    fn munge() {
        use crate::Frame;

        struct Example {
            a: i32,
            b: char,
        }

        let mut frame = Frame::<Example>::new();
        let mut slot = frame.slot();

        munge!(let Example { mut a, mut b } = slot.as_mut());
        assert_eq!(*a.write(42), 42);
        assert_eq!(*b.write('x'), 'x');

        // SAFETY: The slot has been initialized.
        let example = unsafe { slot.assume_init_ref() };
        assert_eq!(example.a, 42);
        assert_eq!(example.b, 'x');

        // SAFETY: The value in frame is initialized.
        let value = unsafe { frame.assume_init() };
        assert_eq!(value.a, 42);
        assert_eq!(value.b, 'x');
    }

    #[test]
    fn basic_functionality() {
        let mut x = Frame::<char>::new();
        assert_eq!(*x.write('a'), 'a');
        // SAFETY: `x` is initialized.
        let x = unsafe { x.assume_init() };
        assert_eq!(*x, 'a');
    }

    #[test]
    fn str_frame() {
        // SAFETY: `5` is valid metadata for a `str`.
        let mut x = unsafe { Frame::<str>::new_unsized(5) };
        assert_eq!(::ptr_meta::metadata(x.as_mut_ptr()), 5);
        // SAFETY: `x` is a valid `[u8; 5]`.
        unsafe {
            x.as_mut_ptr().cast::<[u8; 5]>().write(*b"hello");
        }
        // SAFETY: `x` is initialized.
        let s = unsafe { x.assume_init() };
        assert_eq!(&*s, "hello");
    }

    #[test]
    fn slice_frame() {
        // SAFETY: `4` is valid metadata for a `[u32]`.
        let mut x = unsafe { Frame::<[u32]>::new_unsized(4) };
        assert_eq!(::ptr_meta::metadata(x.as_mut_ptr()), 4);
        // SAFETY: `x` is a valid `[u32; 4]`.
        unsafe {
            x.as_mut_ptr().cast::<[u32; 4]>().write([1, 2, 3, 4]);
        }
        // SAFETY: `x` is initialized.
        let s = unsafe { x.assume_init() };
        assert_eq!(&*s, [1, 2, 3, 4]);
    }

    #[test]
    fn zeroed_slice() {
        // SAFETY: `4` is valid metadata for a `[u32]`.
        let mut x = unsafe { Frame::<[u32]>::new_unsized(4) };
        x.slot().zero();
        // SAFETY: `x` has been completely zeroed, which has initialized all 4
        // elements to `0`.
        let s = unsafe { x.assume_init() };
        assert_eq!(&*s, [0, 0, 0, 0]);
    }
}