1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
//! Memory alocation APIs.
use ::core::{alloc::Layout, ptr::NonNull};
/// The `AllocError` error indicates an allocation failure that may be due to
/// resource exhaustion or to something wrong when combining the given input
/// arguments with this allocator.
#[derive(Debug)]
pub struct AllocError;
/// An implementation of `Allocator` can allocate, grow, shrink, and deallocate
/// arbitrary blocks of data described via `Layout`.
///
/// # Safety
///
/// Memory blocks returned from an allocator must point to valid memory and
/// retain their validity until the block is deallocated, or the allocator is
/// dropped or rendered inaccessible, whichever comes first.
pub unsafe trait Allocator {
/// Attempts to allocate a block of memory.
///
/// On success, returns a `NonNull<[u8]>` meeting the size and alignment
/// guarantees of `layout`.
///
/// The returned block may have a larger size than specified by
/// `layout.size()`, and may or may not have its contents initialized.
///
/// # Errors
///
/// Returning `Err` indicates that either memory is exhausted or `layout`
/// does not meet an allocator's size or alignment constraints.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion.)
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;
/// Deallocates the memory referenced by `ptr`.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ via this
/// allocator.
/// - `layout` must _fit_ that block of memory.
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);
/// Behaves like `allocate`, but also ensures that the returned memory is
/// zero-initialized.
///
/// # Errors
///
/// See [`allocate`](Allocator::allocate) for errors.
fn allocate_zeroed(
&self,
layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
let ptr = self.allocate(layout)?;
let len = ::ptr_meta::metadata(ptr.as_ptr());
// SAFETY: `alloc` returned a valid memory block of length `len`.
unsafe {
ptr.as_ptr().cast::<u8>().write_bytes(0, len);
}
Ok(ptr)
}
/// Attempts to extend the memory block.
///
/// Returns a new `NonNull<[u8]>` containing a pointer and the actual size
/// of the allocated memory. The pointer is suitable for holding data
/// described by new_layout. To accomplish this, the allocator may extend
/// the allocation referenced by `ptr` to fit the new layout.
///
/// If this returns `Ok`, then ownership of the memory block referenced by
/// `ptr` has been transferred to this allocator. The memory may or may not
/// have been freed, and should be considered unusable unless it was
/// transferred back to the caller again via the return value of this
/// method.
///
/// If this method returns `Err`, then ownership of the memory block has not
/// been transferred to this allocator, and the contents of the memory block
/// are unaltered.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ via this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (the `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be greater than or equal to
/// `old_layout.size()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if growing otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`",
);
// SAFETY: `grow_in_place` has the same safety requirements as `grow`.
let result = unsafe { self.grow_in_place(ptr, old_layout, new_layout) };
result.or_else(|_| {
let new_ptr = self.allocate(new_layout)?;
// SAFETY:
// - The caller has guaranteed that `old_layout` fits the memory
// pointed to by `ptr`, and so must be valid for reads of
// `old_layout.size()`.
// - The caller has guaranteed that `new_layout.size()` is
// greater than or equal to `old_layout.size()`, so `new_ptr`
// must be valid for writes of `old_layout.size()`.
// - `u8` has an alignment of 1, so both pointers must be
// properly aligned.
// - The memory pointed by `new_ptr` is freshly-allocated and
// must not overlap with the memory pointed to by `old_ptr`.
unsafe {
::core::ptr::copy_nonoverlapping(
ptr.as_ptr(),
new_ptr.as_ptr().cast::<u8>(),
old_layout.size(),
);
}
// SAFETY:The caller has guaranteed that `ptr` denotes a block
// of memory currently allocated via this allocator, and that
// `old_layout` fits that block of memory.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
})
}
/// Behaves like `grow`, but also ensures that the new contents are set to
/// zero before being returned.
///
/// The memory block will contain the following contents after a successful
/// call to `grow_zeroed`:
///
/// - Bytes `0..old_layout.size()` are preserved from the original
/// allocation.
/// - Bytes `old_layout.size()..old_size` will either be preserved or
/// zeroed, depending on the allocator implementation. `old_size` refers
/// to the size of the memory block prior to the `grow_zeroed` call, which
/// may be larger than the size that was originally requested when it was
/// allocated.
/// - Bytes `old_size..new_size` are zeroed. `new_size` refers to the size
/// of the memory block returned by the `grow_zeroed` call.
///
/// # Safety
///
/// - `ptr` must denote a block of memory currently allocated via this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (the `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be greater than or equal to
/// `old_layout.align()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if growing otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`",
);
let result =
// SAFETY: `grow_zeroed_in_place` has the same safety requirements
// as `grow_zeroed`.
unsafe { self.grow_zeroed_in_place(ptr, old_layout, new_layout) };
result.or_else(|_| {
let new_ptr = self.allocate(new_layout)?;
// SAFETY:
// - The caller has guaranteed that `old_layout` fits the memory
// pointed to by `ptr`, and so must be valid for reads of
// `old_layout.size()`.
// - The caller has guaranteed that `new_layout.size()` is greater
// than or equal to `old_layout.size()`, so `new_ptr` must be
// valid for writes of `old_layout.size()`.
// - `u8` has an alignment of 1, so both pointers must be properly
// aligned.
// - The memory pointed by `new_ptr` is freshly-allocated and must
// not overlap with the memory pointed to by `old_ptr`.
unsafe {
::core::ptr::copy_nonoverlapping(
ptr.as_ptr(),
new_ptr.as_ptr().cast::<u8>(),
old_layout.size(),
);
}
// SAFETY:
// - The end of the old bytes is followed by `new_size - old_size`
// bytes which are valid for writes.
// - A `u8` pointer is always properly aligned.
unsafe {
::core::ptr::write_bytes(
new_ptr.as_ptr().cast::<u8>().add(old_layout.size()),
0,
new_layout.size() - old_layout.size(),
);
}
// SAFETY:The caller has guaranteed that `ptr` denotes a block of
// memory currently allocated via this allocator, and that
// `old_layout` fits that block of memory.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
})
}
/// Behaves like `grow` but returns `Err` if the memory block cannot be
/// grown in-place.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ via this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (the `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be greater than or equal to
/// `old_layout.size()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if growing in place otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn grow_in_place(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
let _ = (ptr, old_layout, new_layout);
Err(AllocError)
}
/// Behaves like `grow_zeroed` but returns `Err` if the memory block cannot
/// be grown in-place.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ via this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (the `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be greater than or equal to
/// `old_layout.size()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if growing in place otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn grow_zeroed_in_place(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
let new_ptr =
// SAFETY: `grow_in_place` has the same safety requirements as
// `grow_zeroed_in_place`.
unsafe { self.grow_in_place(ptr, old_layout, new_layout)? };
// SAFETY:
// - The end of the old bytes is followed by `new_size - old_size` bytes
// which are valid for writes.
// - A `u8` pointer is always properly aligned.
unsafe {
::core::ptr::write_bytes(
new_ptr.as_ptr().cast::<u8>().add(old_layout.size()),
0,
new_layout.size() - old_layout.size(),
);
}
Ok(new_ptr)
}
/// Attempts to shrink the memory block.
///
/// Returns a new [`NonNull<[u8]>`](NonNull) containing a pointer and the
/// actual size of the allocated memory. The pointer is suitable for holding
/// data described by `new_layout`. To accomplish this, the allocator may
/// shrink the allocation referenced by `ptr` to fit the new layout.
///
/// If this returns `Ok`, then ownership of the memory block referenced by
/// `ptr` has been transferred to this allocator. The memory may or may not
/// have been freed, and should be considered unusable unless it was
/// transferred back to the caller again via the return value of this
/// method.
///
/// If this returns `Err`, then ownership of the memory block has not been
/// transferred to this allocator, and the contents of the memory block are
/// unaltered.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ by this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (The `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be less than or equal to `old_layout.size()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if shrinking otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
debug_assert!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be less than or equal to `old_layout.size()`",
);
let result =
// SAFETY: `shrink_in_place` has the same safety requirements as
// `shrink`.
unsafe { self.shrink_in_place(ptr, old_layout, new_layout) };
result.or_else(|_| {
let new_ptr = self.allocate(new_layout)?;
// SAFETY:
// - The caller has guaranteed that `old_layout` fits the memory
// pointed to by `ptr`, and `new_layout.size()` is less than or
// equal to `old_layout.size()`, so `ptr` must be valid for reads
// of `new_layout.size()`.
// - `new_ptr` points to a memory block at least `new_layout.size()`
// in length, so `new_ptr` must be valid for writes of
// `new_layout.size()`.
// - `u8` has an alignment of 1, so both pointers must be properly
// aligned.
// - The memory pointed by `new_ptr` is freshly-allocated and must
// not overlap with the memory pointed to by `old_ptr`.
unsafe {
::core::ptr::copy_nonoverlapping(
ptr.as_ptr(),
new_ptr.as_ptr().cast::<u8>(),
new_layout.size(),
);
}
// SAFETY: The caller has guaranteed that `ptr` denotes a block of
// memory currently allocated via this allocator, and that
// `old_layout` fits that block of memory.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
})
}
/// Behaves like `shrink` but returns `Err` if the memory block cannot be
/// shrunk in-place.
///
/// # Safety
///
/// - `ptr` must denote a block of memory _currently allocated_ by this
/// allocator.
/// - `old_layout` must _fit_ that block of memory (The `new_layout`
/// argument need not fit it).
/// - `new_layout.size()` must be less than or equal to `old_layout.size()`.
///
/// # Errors
///
/// Returns `Err` if the new layout does not meet the allocator's size and
/// alignment constraints, or if shrinking otherwise fails.
///
/// Implementations are encouraged to return `Err` on memory exhaustion
/// rather than panicking or aborting, but this is not a strict requirement.
/// (Specifically: it is _legal_ to implement this trait atop an underlying
/// native allocation library that aborts on memory exhaustion).
///
/// Clients wishing to abort computation in response to an allocation error
/// are encouraged to call the [`handle_alloc_error`] function, rather than
/// directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
unsafe fn shrink_in_place(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
let _ = (ptr, old_layout, new_layout);
Err(AllocError)
}
}
/// The global memory allocator.
#[cfg(feature = "alloc")]
#[derive(Clone)]
pub struct Global;
#[cfg(feature = "alloc")]
impl Global {
#[inline]
fn dangling(align: usize) -> NonNull<[u8]> {
// TODO strict_provenance: Use `::core::ptr::invalid_mut`.
#[allow(clippy::as_conversions)]
let dangling =
// SAFETY: `layout.align()` cannot be zero.
unsafe { NonNull::<u8>::new_unchecked(align as *mut u8) };
let ptr = ::core::ptr::slice_from_raw_parts_mut(dangling.as_ptr(), 0);
// SAFETY: `ptr` is non-null because the `dangling` used to create it
// was non-null.
unsafe { NonNull::new_unchecked(ptr) }
}
#[inline]
fn alloc_impl<const ZEROED: bool>(
&self,
layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
match layout.size() {
0 => Ok(Self::dangling(layout.align())),
size => {
let ptr = if ZEROED {
// SAFETY: We have checked that `layout.size()` is not zero.
unsafe { ::builtin_alloc::alloc::alloc_zeroed(layout) }
} else {
// SAFETY: We have checked that `layout.size()` is not zero.
unsafe { ::builtin_alloc::alloc::alloc(layout) }
};
NonNull::new(::core::ptr::slice_from_raw_parts_mut(ptr, size))
.ok_or(AllocError)
}
}
}
#[inline]
unsafe fn grow_impl<const ZEROED: bool>(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
use ::builtin_alloc::alloc::realloc;
// TODO integer_constants: Use a usize constant for `isize::MAX`.
#[allow(clippy::as_conversions)]
const ISIZE_MAX_AS_USIZE: usize = isize::MAX as usize;
debug_assert!(
new_layout.size() >= old_layout.size(),
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
);
let new_align = new_layout.align();
match old_layout.size() {
0 => self.alloc_impl::<ZEROED>(new_layout),
_ if new_layout.size() > ISIZE_MAX_AS_USIZE - (new_align - 1) => {
Err(AllocError)
}
old_size if old_layout.align() == new_align => {
let new_size = new_layout.size();
let ptr =
// SAFETY:
// - The caller has guaranteed that `ptr` is currently
// allocated and `layout` is the same one used to allocate
// `ptr`.
// - The caller has guaranteed that `new_layout.size() >=
// old_layout.size()`, and the old size is greater than
// zero, so the new size is also greater than zero.
// - We have checked that `new_layout.size()` does not
// overflow an `isize` when rounded up to the nearest
// multiple of `new_align`.
unsafe { realloc(ptr.as_ptr(), old_layout, new_size) };
if !ptr.is_null() {
if ZEROED {
// SAFETY:
// - The caller has guaranteed that `old_size` is less
// than or equal to the size of the memory block
// pointed to by `ptr`.
// - We have asserted that `new_size` is less than
// `isize::MAX` and so `old_size` must also be less
// than `isize::MAX`.
// - `ptr + old_size` is valid for writes of `new_size -
// old_size` because `realloc` extended it to at least
// `new_size` in length.
unsafe {
ptr.add(old_size)
.write_bytes(0, new_size - old_size);
}
}
// SAFETY: We have checked that `ptr` is not null.
unsafe {
Ok(NonNull::new_unchecked(
::core::ptr::slice_from_raw_parts_mut(
ptr, new_size,
),
))
}
} else {
Err(AllocError)
}
}
old_size => {
let new_ptr = self.alloc_impl::<ZEROED>(new_layout)?;
// SAFETY:
// - The caller has guaranteed that `ptr` points to a memory
// block that is at least `old_size` bytes in size.
// - `new_ptr` points to `new_layout.size()` bytes that are
// valid for writes, which is at least `old_size` bytes.
// - Pointers are always aligned for reads and writes of `u8`.
// - `ptr` and `new_ptr` are separate nonoverlapping memory
// blocks per the guarantees of `alloc`.
unsafe {
::core::ptr::copy_nonoverlapping(
ptr.as_ptr(),
new_ptr.as_ptr().cast(),
old_size,
);
}
// SAFETY: The caller has guaranteed that `ptr` points to a
// valid memory block and that `old_layout` fits it.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
}
}
}
}
#[cfg(feature = "alloc")]
// SAFETY: Memory blocks returned from `Global` point to valid memory and retain
// their validity until the block is deallocated.
unsafe impl Allocator for Global {
#[inline]
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.alloc_impl::<false>(layout)
}
#[inline]
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
if layout.size() != 0 {
// SAFETY: The caller has guaranteed that `ptr` denotes a block of
// memory currently allocated via this allocator.
//
// Although `layout` _fits_ the given memory block denoted by `ptr`,
// it is not guaranteed to be the same layout used to allocate that
// block of memory. In particular, it may use the size of the block
// returned by `alloc` which may be larger.
unsafe { ::builtin_alloc::alloc::dealloc(ptr.as_ptr(), layout) }
}
}
#[inline]
fn allocate_zeroed(
&self,
layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
self.alloc_impl::<true>(layout)
}
#[inline]
unsafe fn grow(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: `grow_impl` has the same safety requirements as `grow`.
unsafe { self.grow_impl::<false>(ptr, old_layout, new_layout) }
}
#[inline]
unsafe fn grow_zeroed(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: `grow_impl` has the same safety requirements as `grow`.
unsafe { self.grow_impl::<true>(ptr, old_layout, new_layout) }
}
#[inline]
unsafe fn shrink(
&self,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<NonNull<[u8]>, AllocError> {
use ::builtin_alloc::alloc::realloc;
debug_assert!(
new_layout.size() <= old_layout.size(),
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`",
);
match new_layout.size() {
0 => {
// SAFETY: The caller has guaranteed that `ptr` points to a
// valid block of memory and that `old_layout` fits it.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(Self::dangling(new_layout.align()))
}
new_size if old_layout.align() == new_layout.align() => {
let ptr =
// SAFETY:
// - The caller has guaranteed that `ptr` is currently
// allocated and `old_layout` is the same one used to
// allocate `ptr`.
// - We have checked that `new_size` is greater than zero.
// - `old_layout.size()` must not have overflowed an `isize`
// when rounded up to the nearest multiple of
// `old_layout.align()`, and `new_size` is less than
// `old_layout.size()`, so `new_layout.size()` must not
// overflow an `isize` when rounded up to the nearest
// multiple of `old_layout.align()`.
unsafe { realloc(ptr.as_ptr(), old_layout, new_size) };
NonNull::new(::core::ptr::slice_from_raw_parts_mut(
ptr, new_size,
))
.ok_or(AllocError)
}
new_size => {
let new_ptr = self.allocate(new_layout)?;
// SAFETY:
// - The caller has guaranteed that `ptr` points to a memory
// block that is at least `old_layout.size()` bytes in size,
// which is at least `new_size` bytes.
// - `new_ptr` points to `new_size` bytes that are valid for
// writes.
// - Pointers are always aligned for reads and writes of `u8`.
// - `ptr` and `new_ptr` are separate nonoverlapping memory
// blocks per the guarantees of `allocate`.
unsafe {
::core::ptr::copy_nonoverlapping(
ptr.as_ptr(),
new_ptr.as_ptr().cast(),
new_size,
);
}
// SAFETY: The caller has guaranteed that `ptr` points to a
// valid memory block and that `old_layout` fits it.
unsafe {
self.deallocate(ptr, old_layout);
}
Ok(new_ptr)
}
}
}
}