1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
//! Memory alocation APIs.

use ::core::{alloc::Layout, ptr::NonNull};

/// The `AllocError` error indicates an allocation failure that may be due to
/// resource exhaustion or to something wrong when combining the given input
/// arguments with this allocator.
#[derive(Debug)]
pub struct AllocError;

/// An implementation of `Allocator` can allocate, grow, shrink, and deallocate
/// arbitrary blocks of data described via `Layout`.
///
/// # Safety
///
/// Memory blocks returned from an allocator must point to valid memory and
/// retain their validity until the block is deallocated, or the allocator is
/// dropped or rendered inaccessible, whichever comes first.
pub unsafe trait Allocator {
    /// Attempts to allocate a block of memory.
    ///
    /// On success, returns a `NonNull<[u8]>` meeting the size and alignment
    /// guarantees of `layout`.
    ///
    /// The returned block may have a larger size than specified by
    /// `layout.size()`, and may or may not have its contents initialized.
    ///
    /// # Errors
    ///
    /// Returning `Err` indicates that either memory is exhausted or `layout`
    /// does not meet an allocator's size or alignment constraints.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;

    /// Deallocates the memory referenced by `ptr`.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ via this
    ///    allocator.
    /// - `layout` must _fit_ that block of memory.
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);

    /// Behaves like `allocate`, but also ensures that the returned memory is
    /// zero-initialized.
    ///
    /// # Errors
    ///
    /// See [`allocate`](Allocator::allocate) for errors.
    fn allocate_zeroed(
        &self,
        layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = self.allocate(layout)?;
        let len = ::ptr_meta::metadata(ptr.as_ptr());
        // SAFETY: `alloc` returned a valid memory block of length `len`.
        unsafe {
            ptr.as_ptr().cast::<u8>().write_bytes(0, len);
        }
        Ok(ptr)
    }

    /// Attempts to extend the memory block.
    ///
    /// Returns a new `NonNull<[u8]>` containing a pointer and the actual size
    /// of the allocated memory. The pointer is suitable for holding data
    /// described by new_layout. To accomplish this, the allocator may extend
    /// the allocation referenced by `ptr` to fit the new layout.
    ///
    /// If this returns `Ok`, then ownership of the memory block referenced by
    /// `ptr` has been transferred to this allocator. The memory may or may not
    /// have been freed, and should be considered unusable unless it was
    /// transferred back to the caller again via the return value of this
    /// method.
    ///
    /// If this method returns `Err`, then ownership of the memory block has not
    /// been transferred to this allocator, and the contents of the memory block
    /// are unaltered.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ via this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (the `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be greater than or equal to
    ///   `old_layout.size()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`",
        );

        // SAFETY: `grow_in_place` has the same safety requirements as `grow`.
        let result = unsafe { self.grow_in_place(ptr, old_layout, new_layout) };
        result.or_else(|_| {
            let new_ptr = self.allocate(new_layout)?;

            // SAFETY:
            // - The caller has guaranteed that `old_layout` fits the memory
            //   pointed to by `ptr`, and so must be valid for reads of
            //   `old_layout.size()`.
            // - The caller has guaranteed that `new_layout.size()` is
            //   greater than or equal to `old_layout.size()`, so `new_ptr`
            //   must be valid for writes of `old_layout.size()`.
            // - `u8` has an alignment of 1, so both pointers must be
            //   properly aligned.
            // - The memory pointed by `new_ptr` is freshly-allocated and
            //   must not overlap with the memory pointed to by `old_ptr`.
            unsafe {
                ::core::ptr::copy_nonoverlapping(
                    ptr.as_ptr(),
                    new_ptr.as_ptr().cast::<u8>(),
                    old_layout.size(),
                );
            }
            // SAFETY:The caller has guaranteed that `ptr` denotes a block
            // of memory currently allocated via this allocator, and that
            // `old_layout` fits that block of memory.
            unsafe {
                self.deallocate(ptr, old_layout);
            }

            Ok(new_ptr)
        })
    }

    /// Behaves like `grow`, but also ensures that the new contents are set to
    /// zero before being returned.
    ///
    /// The memory block will contain the following contents after a successful
    /// call to `grow_zeroed`:
    ///
    /// - Bytes `0..old_layout.size()` are preserved from the original
    ///   allocation.
    /// - Bytes `old_layout.size()..old_size` will either be preserved or
    ///   zeroed, depending on the allocator implementation. `old_size` refers
    ///   to the size of the memory block prior to the `grow_zeroed` call, which
    ///   may be larger than the size that was originally requested when it was
    ///   allocated.
    /// - Bytes `old_size..new_size` are zeroed. `new_size` refers to the size
    ///   of the memory block returned by the `grow_zeroed` call.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory currently allocated via this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (the `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be greater than or equal to
    ///   `old_layout.align()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`",
        );

        let result =
            // SAFETY: `grow_zeroed_in_place` has the same safety requirements
            // as `grow_zeroed`.
            unsafe { self.grow_zeroed_in_place(ptr, old_layout, new_layout) };
        result.or_else(|_| {
            let new_ptr = self.allocate(new_layout)?;

            // SAFETY:
            // - The caller has guaranteed that `old_layout` fits the memory
            //   pointed to by `ptr`, and so must be valid for reads of
            //   `old_layout.size()`.
            // - The caller has guaranteed that `new_layout.size()` is greater
            //   than or equal to `old_layout.size()`, so `new_ptr` must be
            //   valid for writes of `old_layout.size()`.
            // - `u8` has an alignment of 1, so both pointers must be properly
            //   aligned.
            // - The memory pointed by `new_ptr` is freshly-allocated and must
            //   not overlap with the memory pointed to by `old_ptr`.
            unsafe {
                ::core::ptr::copy_nonoverlapping(
                    ptr.as_ptr(),
                    new_ptr.as_ptr().cast::<u8>(),
                    old_layout.size(),
                );
            }
            // SAFETY:
            // - The end of the old bytes is followed by `new_size - old_size`
            //   bytes which are valid for writes.
            // - A `u8` pointer is always properly aligned.
            unsafe {
                ::core::ptr::write_bytes(
                    new_ptr.as_ptr().cast::<u8>().add(old_layout.size()),
                    0,
                    new_layout.size() - old_layout.size(),
                );
            }
            // SAFETY:The caller has guaranteed that `ptr` denotes a block of
            // memory currently allocated via this allocator, and that
            // `old_layout` fits that block of memory.
            unsafe {
                self.deallocate(ptr, old_layout);
            }

            Ok(new_ptr)
        })
    }

    /// Behaves like `grow` but returns `Err` if the memory block cannot be
    /// grown in-place.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ via this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (the `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be greater than or equal to
    ///   `old_layout.size()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if growing in place otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn grow_in_place(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let _ = (ptr, old_layout, new_layout);

        Err(AllocError)
    }

    /// Behaves like `grow_zeroed` but returns `Err` if the memory block cannot
    /// be grown in-place.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ via this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (the `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be greater than or equal to
    ///   `old_layout.size()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if growing in place otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn grow_zeroed_in_place(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let new_ptr =
            // SAFETY: `grow_in_place` has the same safety requirements as
            // `grow_zeroed_in_place`.
            unsafe { self.grow_in_place(ptr, old_layout, new_layout)? };

        // SAFETY:
        // - The end of the old bytes is followed by `new_size - old_size` bytes
        //   which are valid for writes.
        // - A `u8` pointer is always properly aligned.
        unsafe {
            ::core::ptr::write_bytes(
                new_ptr.as_ptr().cast::<u8>().add(old_layout.size()),
                0,
                new_layout.size() - old_layout.size(),
            );
        }

        Ok(new_ptr)
    }

    /// Attempts to shrink the memory block.
    ///
    /// Returns a new [`NonNull<[u8]>`](NonNull) containing a pointer and the
    /// actual size of the allocated memory. The pointer is suitable for holding
    /// data described by `new_layout`. To accomplish this, the allocator may
    /// shrink the allocation referenced by `ptr` to fit the new layout.
    ///
    /// If this returns `Ok`, then ownership of the memory block referenced by
    /// `ptr` has been transferred to this allocator. The memory may or may not
    /// have been freed, and should be considered unusable unless it was
    /// transferred back to the caller again via the return value of this
    /// method.
    ///
    /// If this returns `Err`, then ownership of the memory block has not been
    /// transferred to this allocator, and the contents of the memory block are
    /// unaltered.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ by this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (The `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be less than or equal to `old_layout.size()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if shrinking otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be less than or equal to `old_layout.size()`",
        );

        let result =
            // SAFETY: `shrink_in_place` has the same safety requirements as
            // `shrink`.
            unsafe { self.shrink_in_place(ptr, old_layout, new_layout) };
        result.or_else(|_| {
            let new_ptr = self.allocate(new_layout)?;

            // SAFETY:
            // - The caller has guaranteed that `old_layout` fits the memory
            //   pointed to by `ptr`, and `new_layout.size()` is less than or
            //   equal to `old_layout.size()`, so `ptr` must be valid for reads
            //   of `new_layout.size()`.
            // - `new_ptr` points to a memory block at least `new_layout.size()`
            //   in length, so `new_ptr` must be valid for writes of
            //   `new_layout.size()`.
            // - `u8` has an alignment of 1, so both pointers must be properly
            //   aligned.
            // - The memory pointed by `new_ptr` is freshly-allocated and must
            //   not overlap with the memory pointed to by `old_ptr`.
            unsafe {
                ::core::ptr::copy_nonoverlapping(
                    ptr.as_ptr(),
                    new_ptr.as_ptr().cast::<u8>(),
                    new_layout.size(),
                );
            }
            // SAFETY: The caller has guaranteed that `ptr` denotes a block of
            // memory currently allocated via this allocator, and that
            // `old_layout` fits that block of memory.
            unsafe {
                self.deallocate(ptr, old_layout);
            }

            Ok(new_ptr)
        })
    }

    /// Behaves like `shrink` but returns `Err` if the memory block cannot be
    /// shrunk in-place.
    ///
    /// # Safety
    ///
    /// - `ptr` must denote a block of memory _currently allocated_ by this
    ///   allocator.
    /// - `old_layout` must _fit_ that block of memory (The `new_layout`
    ///   argument need not fit it).
    /// - `new_layout.size()` must be less than or equal to `old_layout.size()`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and
    /// alignment constraints, or if shrinking otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion
    /// rather than panicking or aborting, but this is not a strict requirement.
    /// (Specifically: it is _legal_ to implement this trait atop an underlying
    /// native allocation library that aborts on memory exhaustion).
    ///
    /// Clients wishing to abort computation in response to an allocation error
    /// are encouraged to call the [`handle_alloc_error`] function, rather than
    /// directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ::builtin_alloc::alloc::handle_alloc_error
    unsafe fn shrink_in_place(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        let _ = (ptr, old_layout, new_layout);

        Err(AllocError)
    }
}

/// The global memory allocator.
#[cfg(feature = "alloc")]
#[derive(Clone)]
pub struct Global;

#[cfg(feature = "alloc")]
impl Global {
    #[inline]
    fn dangling(align: usize) -> NonNull<[u8]> {
        // TODO strict_provenance: Use `::core::ptr::invalid_mut`.
        #[allow(clippy::as_conversions)]
        let dangling =
            // SAFETY: `layout.align()` cannot be zero.
            unsafe { NonNull::<u8>::new_unchecked(align as *mut u8) };
        let ptr = ::core::ptr::slice_from_raw_parts_mut(dangling.as_ptr(), 0);
        // SAFETY: `ptr` is non-null because the `dangling` used to create it
        // was non-null.
        unsafe { NonNull::new_unchecked(ptr) }
    }

    #[inline]
    fn alloc_impl<const ZEROED: bool>(
        &self,
        layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        match layout.size() {
            0 => Ok(Self::dangling(layout.align())),
            size => {
                let ptr = if ZEROED {
                    // SAFETY: We have checked that `layout.size()` is not zero.
                    unsafe { ::builtin_alloc::alloc::alloc_zeroed(layout) }
                } else {
                    // SAFETY: We have checked that `layout.size()` is not zero.
                    unsafe { ::builtin_alloc::alloc::alloc(layout) }
                };
                NonNull::new(::core::ptr::slice_from_raw_parts_mut(ptr, size))
                    .ok_or(AllocError)
            }
        }
    }

    #[inline]
    unsafe fn grow_impl<const ZEROED: bool>(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        use ::builtin_alloc::alloc::realloc;

        // TODO integer_constants: Use a usize constant for `isize::MAX`.
        #[allow(clippy::as_conversions)]
        const ISIZE_MAX_AS_USIZE: usize = isize::MAX as usize;

        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        let new_align = new_layout.align();

        match old_layout.size() {
            0 => self.alloc_impl::<ZEROED>(new_layout),
            _ if new_layout.size() > ISIZE_MAX_AS_USIZE - (new_align - 1) => {
                Err(AllocError)
            }
            old_size if old_layout.align() == new_align => {
                let new_size = new_layout.size();

                let ptr =
                    // SAFETY:
                    // - The caller has guaranteed that `ptr` is currently
                    //   allocated and `layout` is the same one used to allocate
                    //   `ptr`.
                    // - The caller has guaranteed that `new_layout.size() >=
                    //   old_layout.size()`, and the old size is greater than
                    //   zero, so the new size is also greater than zero.
                    // - We have checked that `new_layout.size()` does not
                    //   overflow an `isize` when rounded up to the nearest
                    //   multiple of `new_align`.
                    unsafe { realloc(ptr.as_ptr(), old_layout, new_size) };
                if !ptr.is_null() {
                    if ZEROED {
                        // SAFETY:
                        // - The caller has guaranteed that `old_size` is less
                        //   than or equal to the size of the memory block
                        //   pointed to by `ptr`.
                        // - We have asserted that `new_size` is less than
                        //   `isize::MAX` and so `old_size` must also be less
                        //   than `isize::MAX`.
                        // - `ptr + old_size` is valid for writes of `new_size -
                        //   old_size` because `realloc` extended it to at least
                        //   `new_size` in length.
                        unsafe {
                            ptr.add(old_size)
                                .write_bytes(0, new_size - old_size);
                        }
                    }
                    // SAFETY: We have checked that `ptr` is not null.
                    unsafe {
                        Ok(NonNull::new_unchecked(
                            ::core::ptr::slice_from_raw_parts_mut(
                                ptr, new_size,
                            ),
                        ))
                    }
                } else {
                    Err(AllocError)
                }
            }
            old_size => {
                let new_ptr = self.alloc_impl::<ZEROED>(new_layout)?;
                // SAFETY:
                // - The caller has guaranteed that `ptr` points to a memory
                //   block that is at least `old_size` bytes in size.
                // - `new_ptr` points to `new_layout.size()` bytes that are
                //   valid for writes, which is at least `old_size` bytes.
                // - Pointers are always aligned for reads and writes of `u8`.
                // - `ptr` and `new_ptr` are separate nonoverlapping memory
                //   blocks per the guarantees of `alloc`.
                unsafe {
                    ::core::ptr::copy_nonoverlapping(
                        ptr.as_ptr(),
                        new_ptr.as_ptr().cast(),
                        old_size,
                    );
                }
                // SAFETY: The caller has guaranteed that `ptr` points to a
                // valid memory block and that `old_layout` fits it.
                unsafe {
                    self.deallocate(ptr, old_layout);
                }
                Ok(new_ptr)
            }
        }
    }
}

#[cfg(feature = "alloc")]
// SAFETY: Memory blocks returned from `Global` point to valid memory and retain
// their validity until the block is deallocated.
unsafe impl Allocator for Global {
    #[inline]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl::<false>(layout)
    }

    #[inline]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        if layout.size() != 0 {
            // SAFETY: The caller has guaranteed that `ptr` denotes a block of
            // memory currently allocated via this allocator.
            //
            // Although `layout` _fits_ the given memory block denoted by `ptr`,
            // it is not guaranteed to be the same layout used to allocate that
            // block of memory. In particular, it may use the size of the block
            // returned by `alloc` which may be larger.
            unsafe { ::builtin_alloc::alloc::dealloc(ptr.as_ptr(), layout) }
        }
    }

    #[inline]
    fn allocate_zeroed(
        &self,
        layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        self.alloc_impl::<true>(layout)
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: `grow_impl` has the same safety requirements as `grow`.
        unsafe { self.grow_impl::<false>(ptr, old_layout, new_layout) }
    }

    #[inline]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        // SAFETY: `grow_impl` has the same safety requirements as `grow`.
        unsafe { self.grow_impl::<true>(ptr, old_layout, new_layout) }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        use ::builtin_alloc::alloc::realloc;

        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`",
        );

        match new_layout.size() {
            0 => {
                // SAFETY: The caller has guaranteed that `ptr` points to a
                // valid block of memory and that `old_layout` fits it.
                unsafe {
                    self.deallocate(ptr, old_layout);
                }
                Ok(Self::dangling(new_layout.align()))
            }

            new_size if old_layout.align() == new_layout.align() => {
                let ptr =
                    // SAFETY:
                    // - The caller has guaranteed that `ptr` is currently
                    //   allocated and `old_layout` is the same one used to
                    //   allocate `ptr`.
                    // - We have checked that `new_size` is greater than zero.
                    // - `old_layout.size()` must not have overflowed an `isize`
                    //   when rounded up to the nearest multiple of
                    //   `old_layout.align()`, and `new_size` is less than
                    //   `old_layout.size()`, so `new_layout.size()` must not
                    //   overflow an `isize` when rounded up to the nearest
                    //   multiple of `old_layout.align()`.
                    unsafe { realloc(ptr.as_ptr(), old_layout, new_size) };
                NonNull::new(::core::ptr::slice_from_raw_parts_mut(
                    ptr, new_size,
                ))
                .ok_or(AllocError)
            }

            new_size => {
                let new_ptr = self.allocate(new_layout)?;
                // SAFETY:
                // - The caller has guaranteed that `ptr` points to a memory
                //   block that is at least `old_layout.size()` bytes in size,
                //   which is at least `new_size` bytes.
                // - `new_ptr` points to `new_size` bytes that are valid for
                //   writes.
                // - Pointers are always aligned for reads and writes of `u8`.
                // - `ptr` and `new_ptr` are separate nonoverlapping memory
                //   blocks per the guarantees of `allocate`.
                unsafe {
                    ::core::ptr::copy_nonoverlapping(
                        ptr.as_ptr(),
                        new_ptr.as_ptr().cast(),
                        new_size,
                    );
                }
                // SAFETY: The caller has guaranteed that `ptr` points to a
                // valid memory block and that `old_layout` fits it.
                unsafe {
                    self.deallocate(ptr, old_layout);
                }
                Ok(new_ptr)
            }
        }
    }
}